

# Assessment of the Radiometric Calibration of PlanetScope 2 Dove Imagery

Performed under the CRADA #HM1538-CR-FY16-010

Dmitry Varlyguin\*, Luke Roth\*, Stephanie Hulina\*, Manuela Rayner\*\*, James Vrabel\*\*, Frank Avila\*\*, Paul Bresnahan\*\*, Luis Henry\*\*

(\*) GDA Corp., 301 Science Park Road, Suite 112, State College, PA, USA 16803 (\*\*) NGA, 7500 GEOINT Drive, Springfield, Virginia, USA 22150

**Presenter:** Dmitry Varlyguin

GDA Corp., VP / Chief Scientist dmitry@gdacorp.com

16th JACIE

September 19-21, 2017 USGS, Reston, VA



#### Content

- Goal and Main Result
- Imagery
- Data Processing
- Analysis
  - ✓ PlanetScope 2 / Landsat 8 Correlations
  - **✓ Band Predictions**
  - **✓ Per-Satellite Effects**
  - ✓ ISS / SSO Orbit Effects
- Conclusions

#### **Goal & Main Results**

#### Goal:

Assess the radiometric calibration of the PlanetScope 2 TOA imagery by cross-comparing it with "gold" standard Landsat 8 TOA data

#### **Main Result:**

PlanetScope 2 imagery exhibits high correlation with coincident / co-located Landsat 8 imagery. High correlation observed across all analyzed locations, dates, PlanetScope 2 sensors, bands, and LC types



# **Acquired Imagery**

- Access: Planet Data API v1
- **Imagery Dates**: Jan 01, 2016 Feb 01, 2017
- **AOIs**: 12 Landsat footprints over 3 countries; Represent various LCs, both invariant & seasonal
- LT8 Imagery: 91 scene; CC<25%
- Dove Imagery: PlanetScope 2 generation
   Co-incident / Co-located with LT8 +/-3 hours
   4,577 scenes reported
   4,067 scenes downloaded (which had full meta & UDM\*)

(\*) UDM – Unusable Data Masks; pixel level masks supplied by Planet



# Acquired Imagery

- PlanetScope 2 generation (i.e., operational)
- 31 different PlanetScope 2 satellites

  Between 14 to 248 scenes were acquired for each satellite ID
- Level 3B (Ortho Scene) products

  Radiometrically corrected to top-of-atmosphere (TOA) radiance; orthorectified,

  projected to a cartographic projection (UTM); 3.0m GSD
- 2,401 scene: ISS orbit; 1,666 scenes: SSO

  ISS International Space Station orbit (altitude: ~420 km; equator crossing time: varies; resolution: ~3m)

  SSO -- Sun-Synchronous Orbit (altitude: ~475 km; equator crossing time: 9:30-11:30am; resolution: ~3.7m)
  - ~44 PlanetScope 2 scenes per 1 Landsat scene



# Data Processing

- Converted all imagery to TOA
- Re-projected and down-sampled PlanetScope 2 imagery to match coincident Landsat 8
- Applied data gaps masks (QA+UDM) to each co-incident/co-located Landsat 8 / PlanetScope 2 pair
- Extracted ~5 million cloud-free sample points from co-incident/co-located images (data gaps excluded; random sample)
- Extracted pseudo-invariant points to model variations among PlanetScope 2 satellites
  - Removed non-invariant LC types according to a LC map
  - Removed the effects of LC variation and change between Landsat 8 images over time. Kept only pixels with similar values over time (within 2% reflectance in all bands)
  - Removed points where Landsat 8 and PlanetScope 2 values differed by more than 50% (assumed cloud, atmosphere contaminated)
  - Final set: 40,000 to 60,000 training points per each target spectral profile, representing 32 distinct PlanetScope 2 satellite IDs and both orbits



### PS2 / LT8 Correlations

- High correlation between PlanetScope 2 and Landsat 8 imagery (0.86 to 0.95 in R<sup>2</sup>)
- High correlation observed across all analyzed locations, dates, LC types, and PlanetScope 2 sensors and bands (Red band has the highest correlation)

#### PlanetScope 2 Correlation with Landsat 8 (TOA Reflectances, R<sup>2</sup>)

| Model                  | Blue Band<br>Accuracy | Green Band<br>Accuracy | Red Band<br>Accuracy | NIR Band<br>Accuracy |
|------------------------|-----------------------|------------------------|----------------------|----------------------|
| Ridge Regression       | 0.866 +/- 0.005       | 0.910 +/- 0.004        | 0.924 +/- 0.001      | 0.880 +/- 0.003      |
| Lasso Regression       | 0.852 +/- 0.003       | 0.898 +/- 0.001        | 0.918 +/- 0.001      | 0.872 +/- 0.003      |
| <b>Regression Tree</b> | 0.915 +/- 0.001       | 0.943 +/- 0.002        | 0.948 +/- 0.001      | 0.921 +/- 0.003      |
| Random Forest          | 0.923 +/- 0.001       | 0.948 +/- 0.002        | 0.951 +/- 0.000      | 0.927 +/- 0.002      |



#### **Band Predictions**

- PlanetScope 2 Green, Red, and NIR bands are the most important predictive variables for the corresponding Landsat 8 spectral band
- Landsat 8 Blue band is not predicted well by the PlanetScope 2 Blue band
- Landsat Blue band is more accurately predicted by the PlanetScope 2 Green band
  - ✓ Due to overlap between the PlanetScope 2 Green band with Landsat Blue band?
  - ✓ Due to higher atm contamination of PlanetScope 2 Blue band (vs Landsat Blue band)?

#### **Calibration-to-Landsat Coefficients of the Spectral Bands**

(Ridge Regression Model)

| Input Variable    | Landsat Blue | Landsat Green | Landsat Red | Landsat NIR |
|-------------------|--------------|---------------|-------------|-------------|
| PlanetScope Blue  | 0.051        | -0.602        | -0.129      | 0.278       |
| PlanetScope Green | 0.970        | 1.544         | -0.344      | -0.196      |
| PlanetScope Red   | -0117        | 0.122         | 1.619       | -0.089      |
| PlanetScope NIR   | 135          | -0.124        | -0.187      | 0.975       |

| Sensor              | Blue Band  | <b>Green Band</b> | Red Band   | NIR Band   |
|---------------------|------------|-------------------|------------|------------|
| Landsat 8           | 450-510 nm | 530-590 nm        | 630-670 nm | 850-880 nm |
| PlanetScope 2 Doves | 455-515 nm | 500-590 nm        | 590-670 nm | 780-860 nm |



### Per Satellite Effects

Small but measurable and repeatable variability in TOA reflectances is observed per PlanetScope 2 orbit, satellite, and spectral band (for bright pseudo-invariant land cover types)

The PlanetScope 2 SSO sensors tend to report lower (vs Landsat 8) TOA reflectances for all bands





### Per Satellite Effects

The PlanetScope 2 ISS orbit sensors tend to report higher (vs LT8) TOA reflectances in Blue band and lower TOA reflectances in the lower frequencies





### ISS / SSO Effects

#### PlanetScope 2 vs Landsat 8 Average % Reflectance Difference

(bright pseudo-invariant LC, all AOIs, sensor and band averages)



- PlanetScope 2 ISS scenes seem to be brighter than Landsat 8
- PlanetScope 2 SSO scenes seem to be darker than Landsat 8
- Indications of a temporal trend in PlanetScope 2 imagery overall brightness

SSO: Slight decrease? Stable?

ISS: Increase?

*Inconclusive* (insufficient repeat imagery)



# Conclusions

- High correlation between co-incident / co-located PlanetScope 2 and Landsat 8 imagery
  - R<sup>2</sup>: 0.85 to 0.95
  - Across all analyzed locations, dates, PlanetScope 2 sensors, bands, and LC types
  - Red band has the highest correlation
- PlanetScope 2 Green, Red, and NIR band value is the most important predictor for the corresponding Landsat 8 spectral band
- PlanetScope 2 Green band is the most important predictor for Landsat 8 Blue band



### Conclusions

- For bright pseudo-invariant LC types: A small but measurable and repeatable variability in PlanetScope 2 TOA reflectances per orbit, satellite, and spectral band
  - SSO imagery:
    - Tends to be darker than Landsat 8
    - Tend to report lower values for all bands than Landsat 8
    - · Indications of either a stable values or a slight decrease in overall brightness over time
  - ISS imagery :
    - Tends to be brighter than Landsat 8
    - Tend to report higher values in Blue band than Landsat 8
    - Tends to report lower values in Green, Red, and NIR than Landsat 8
    - Indications of a slight increase in overall brightness over time
- PlanetScope 2 calibration may be further improved by calibration to the surface reflectances



# GDA Corp. Geospatial Data Analysis Corporation

Monitoring The World, For A Better Tomorrow

#### THANK YOU!